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REPORT No. 80.

STABILITY OF THE PARACHUTE AND HELICOPTER.
By H. BaTEMAN.

INTRODUCTION.

This paper was submitted to the National Advisory Committee for Aeronautics by
Professor H. Bateman, of the California Institute of Technology, and its publication duly
authorized by the committee as Technical Report No. 80.

The mathematical theory of the stability of a parachute which is symmetrical with respect
to a plane is very similar to the well-known theory of the stability of an airplane, but the values
of the resistance coefficients are naturally different. When the parachute does not rotate, it
may be compared with an airplane in a straight dive. There are oscillations corresponding to
the longitudinal and lateral oscillations, and these are practically independent of one another.
Thus, when the parachute swings like a pendulum as it descends, we have an oscillation corre-
sponding to the pitching of an airplane, while there is another type of oscillation which corre-
sponds to the Duteh roll.

When the parachute is symmetrical about an axis, so that it has the form of a solid of rev-
olution, there may be no banking in the oscillation corresponding to the Dutech roll, and the
oscillation then becomes a simple swing like the one which corresponds to the pitching of an
airplane, In this case a combination of two simple swings in perpendicular planes may give rise
to a compound oscillation, which may be likened to the motion of a conical pendulum falling
under gravity. In the general case the combination of the simple swing and Dutch roll gives
rise to a compound motion of a complicated character.

ANALYTICAL DISCUSSION.

To discuss the matter analytically we shall write down the equations of motion in the
notation used by G. H. Bryan ® and S. Brodetsky.? We shall take the axis of y as axis of sym-
metry and assume that in the steady state the parachute is falling with velocity ¥V in & vertical
direction, which coincides with the axis of ¥, and is rotating with angular velocity @ around the
axis of y. This last assumption is made for the sake of generality, so as to cover the case of a
rotating solid of revolution and to obtain a condition corresponding to some extent with the case
of the helicopter where the longitudinal and lateral oscillations are not independent. The
equations of motion may be written in the form

.‘;i’. [‘{};+<Q+q>w—r<7+v>]= Wsin 6— X,
;_V [‘%‘-;’+p(7+v)—_u@+q)]="‘ Weos 8 sin ¢— Z,
_‘gdt+A;Br(Q+9)=—L;

§%§+§§_A pQ+0=-N,

W [dv - -

7 Ef-l-m—pw]_ Weos 6 cos ¢— ¥,
B d
g at

1 8tability in A viation.

2 The Téhoku Mathematical Journal, vol. 14, Avgust, 1918, p. 116,
144539—20——2 ; b
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Here W is the weight of the parachute and passenger, X, Y, Z, L, M, N the component,
air forces and couples referred to axes fixed in the parachute, B is the moment of inertia about
the exis of symmetry, A the moment of inertia about a perpendmular axis through the centor
of grav1ty, both measured in gravitational units, U+w, ,%, p, € +¢, r are component velocities
and spins in the disturbed motion. To obtain the directions of the axes in space in a disturbed
position of the parachute we suppose the parachtte rotated first about the axis of y (from z to-x)
through an angle ¢, then about the axis of z (from z to y) through an angle 6, and finally about
the axis of # (from y to 2) through an angle ¢.

Let us write u+iw=a, p+ir=>5, ¢+i6=x where i denotes 4/—1, then since w, w, p, r, 0,
and ¢ are small in a small oscillation and the parachute is symmetrical about. the axis of y, wo
may write to a first approximation

do d@ dx

P='(ﬁ‘, a"'r J"‘

X +iZ=aE+bF
L+iN=aJ+bK

where the generalized resistance coefficients E, F, J, K are complex quantltles
The above equations imply thatif E= E, +4E,, etc.,

Xo=Zy=E, Z=—X.—E,
Xp='zr =F, Zp'="Xr=Fu
Lu=Nw=Ju_ Nu=—L' =J3J

LD=N1-='K” N'=_'Lr =-K11
Xv=0’ Xq=0, Zv=0, Zq=0,
Ly=0, L,=0, N.=0, N,=0,

It is on account of these relations that the analysm for the symmetrical parachute is
simpler than that for an airplane in a stra:[ght drive. If, in fact, we neglect squares of small

quantities and use D ta denote the operatore (T the first four equations may be written in the

form
[ o-ie)+ Elat[(ZX-ir YD+ W=

Jat[2 0oy (Brig B )D]
Seeking a solution of the form a=@a,M x=x¢"* we obtain the period equation

[—(7\ Q) +E][—7\’+<K+1Q )\] tJ (H—@F)R+ W]=o This is & cubic equation

with complex coefficients for t.he determination of A. When Q=0 it reduces to a cubic
equation with real coefficients for we have the relations E,=o0, F;=o0, J,=0, K=o,

Remembering that in the general case of a rigid airplane the oscillations about a state
of steady motion are determined by an algebraic equation of the eighth degree, we infer that,
in the present degenerate case our real cubic-is a double factor of the octic and the penods and
decrements are the same for simple swings in two perpendicular planes through the axis of
symmetry of the parachute.

When @ =0 a root A=a+48 for which a is negative and 8 positive implies the existence
of a damped oscillation in which the center of gravity of the parachute describes a curve on a
vertical cylinder in such a way that it moves in a counterclockwise direction when the axes
are left handed. To see this we notice that %+ 4w is of the form

Reat- [cos Bt +14 sin B(t—4,)]

where R and #, are real quantities. This equation indicates that 35 increases with £ and since
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\
the axis of z is to the left of the axis of z, the axis of ¢ being 'downwards, -this means that the
center of gravity moves on the cylinder in the counterclockwise direction.

The equation ¢+18=X¢le+i®¥ implies that at the same fime the axis of symmetry pre-
cesses around the vertical in the counterclockwise direction. If we disregard thevertical motion
the character of the oscillation may be pictured by imagining a cone representing the para-
chute to partly roll and partly slide on the outside of another cone whose axis is vertical.

Let us call this a positive oscillation and use the term megaiive oscillation to denote one
in which 8 is negative and the two motions take place in the clockwise direction.

Either a positive or negative oscillation can be regarded as built up from two si.mple
swings in perpendicular p]a.nes, the two swings having the same period and damping time,
but diﬂ'ering in phase by a quarter period. By combi.uing two such swings with an arbitrary
difference in phase a type of elliptic oscillation is obtained.

It should be noticed than an undamped positive oscillation may correspond to a new type
of steady motion of the parachutfe. If such & motion exist it is characterized by v=o0, g=0
and the fact that the cubic equation has two purely imaginary roots.

Thus cubic equation may be written in the form

M4yNfaul+T=0

= N,y= Z"'"%ﬁ") w=—~—W<X—XN) |

Let N»—2a\ +8 be a factor of the cubic, then « and 6 are determined by the equations

where

4ot —0+Zay+a2w=0
—82af—yb+z=0.
i With the aid of these equations we can plot the curves {=constant in the (z, y) plane.
Sinee (422 + 2oy +2w) (y+2a) =2
a curve {=constant (a=constant) is & hyperbola. When a=0 it reduces to z=o0, y= % and
this is & boundary of the region of stability in the (z,%) plane. The condition for undamped
oscillations is, moreover, either z=0 or y=l

The asymptotes of the hyperbola = constant are
y+2a=%—15and 2ay+mu+4a’+%¥=o
hence when §=— %We must have z=c0y=co. This means that we can not have a value of ¢

which is smaller than —%; consequently when the time of demping is given the period p can

not be greater than a certain limiting value P.
If o be given it is clear that P increases with w and so it is desirable that w should be

XuNr ]

made as large as possible. This can be done either by making ¥V large or by making X,— N

negative and fairly large.

Now V is generally less than 3¢ and ought not to be increased beyond this value, conse-
quently the most hopeful method of improving the stability of the parachute is to make
Xr—XNN negative. It is probable that in the Calthrop parachute this condition has been

secured.
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f
In Figure I the curves t=constant have been drawn for two different values of w.
It will be seen that when w=.85 the time of damping ¢ is generally greater than the period.
This is sometimes the case even when w=.5, but by choosing # and y in a suitable manner it is
possible to make p greater than . The importance of a fairly large value of w is thus manifest.

/5 In his study of the stability of the para-
. Iri, chute, Brodetsky treats the parachute as a _
7 J“/-"M&a /",’7-&‘4-’ circular disk attached to a weighted stick and .
/3 / finds from a condition equivalent to y>%that
/2 P82 T 7 7 the center of gravity must lie between certain
[ - limits. . The center of gravity must naturally
PN L] ; be fairly low, and there scems no way of
i ]F "{n T / ¥ avoiding this except perhaps by attaching a
0 I 7 —| ring-shaped balloon to the rim of the disk.
] ] The upward thrust on the balloon and the
g I /‘;2:33 4 downward force through the center of gravity !
P / o= 704 would then have as.their resultant a force
' acting through a point lower than the center
7 )&5’ / \ of gravity, and this point would act as the
Y 25 center of gravity of the parachute in the
"6 117 £-438 | usual theory. Unless it could be combined
5 '07;5\_ Ve with & helicopter in some way, the combi-
B =T z‘_’}‘;‘g- nation of a parachute and toroidal balloon
# 897 R would be of theorefical interest only,
s t-o,ou Turning now to the case in which ¢ +0,
I A ¥k i . we write
%} T T free ] . . ]
2 2 E=FE,+@Q (e+ie)  F=iF,+q (f,+if)
/ J=id+ ¢ (j1+i?.n) K= Ko'{'Q (k1+‘i-ka)
o The additional terms involving @ give

7T 2 8 £ & 6 7 &8 @
Fia. I,

the forces and couples arising from the Mag-
nus effect or its inverse! and from related
phenomena.? The cubic equation may now be written in the form

. T(N=P()+QUGF+iH) B+ T +iR)A—i WG, +iip)l+ @1 1=0,
where

B(1) = IZ,A,HE*A; WK“-A’+(E°KO+JOF.,+ JQ—WTV)A+J° W,

_Ade+ Wk,
- . e
H=¥(B—2A)+%(Ae-,:+ Wiy,

. vV .
I=Eok1+Koel+'Jofz+Fo?:+lZ_‘ Jar

. W . WV. B-A
R=Epk, +Koez“Jof1”Fd1—'E'Ko—Th+ EoT'

G

To study the effect of rotation upon the oscillations let J, a, +18,, o —i8, be the roots

of the equation ®(1) =0, 1, and o, being supposed negative and let 0,4+t o, +iry, o3 +1r,, be

the quantities which must be added to Ay, e, +18,, & ~18;, respectively, to give the correspond-

ing roots of the equation ¥(1)=o0. If « and 7 are both positive it means that the offect of

rotation is to diminish the period of a positive oscillation and to increase the time of damping &
© For this effoct 506 A. Lafay. Comptes Rendus.  Paris. Vob. 151 (19103, p. 50T, w0k, 128 GOD), 3. THH8. = = =+ e ks el

, D X
2 For the effect of sldeslip on & propeller ses the Technieal Reports of the British Advisory Commitiee for Aerorautics 1912-13, 1613-14,
and 1918,
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The effect on a negative oscillation is to increase both the period and the time of damping.
The effect on a simple subsidence is to make it periodic and increase the time of damping.
The effect of rotation when ¢ and r are not both positive is easily inferred.

In order that o, o,, o, may 2all be negative and the damping times for the three disturb-
ances associated with 1y, &, +148;, o, —18, all increased, it is necessary, but not sufficient, that
@@, @I, and @, should all be positive. Now Ny=J,+ @}, hence it is necessary in the first
place that the effect of the rotation should be to increase N,. The effect on the period is of
some interest because in generasl the single period and time of damping associated with the
two conjugate roots a, +8, and o, —148,, will give rise to two different periods and two different
times of damping; also a new positive or negative oscillation with a long period will arise from
the simple subsidence associated with the root 4,. The phenomenon of the division of one
period into two is somewhat analogous to that which occurs in the Zeeman effect, especially
as we may have a compound oscillation built up from positive and negative circular oscilla-
tions of nearly equal period. The curves in Figure IT give the horizontal projection of the
path of the center of gravity of the parachute or helicopter in two particular cases of com-
pound oscillations of the above type. In the
first case the two component circular oscilla-
tions are undamped, in the second case they
are both damped, the rate of subsidence being

the same in each case. A complete discus- / N
sion of the effect of rotation on stability is a2
out of the question at present owing to our 1V

lack of knowledge of the values of the various
resistance coefficients, but it may be worth
while to ascertain the conditions for stability
by finding the conditions that a cubic equa-~
tion with complex coefficients may haveroots
whose real parts are all negative. '

The conditions that a cubic equation with complex coefficients may have the real parts of all
18 roots negative.

The method given by E.J. Routh® for finding the conditions that an algebraic equation
with real coefficients may have the real parts of all its roots negative may be extended to the
case of an equation with complex coefficients.

Let us consider the case of the cubic

(@t a) @+a) @+ a)=t+p2 + gz +r=c*+ (p, +ipa) 2 + (¢, +igs) 2+ 1, + iy

Lot o, =a;+1y,, og=2+1,; ay=2;+1Ys, and let the equation whose roots are —z, +1y,,
~ T3+, —%F1Ys, e

Fi6. IL

(z+8,) (@48, (&+8;)=x*+Pz*+Qz+R.

In Routh’s method the first step is to write 4y for » and to separate the real and imaginary
parts of the cubic, thus obtaining two expressions

¥+ —ay—r=f¥)
Y+ Y —ri =5

The process of finding the greatest common measure of f; (¥) end f; (¥) must now be carried
out, the sign of the remainder being changed at each step just as in Sturm’s theorem. In this
way we obtain a series of polynomials whose first coefficients are

H
1, py ﬁ: and

1
E=p; {HI-p, +, P}

t Loe. olt,
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respectively, where o :
H=ppga— &' — i+ 0%
I=p2r+1igy — 1P 0
In order that—,, x,, and z, may all be positive it is necessery and sufficient that p,, H,
and K should all be positive. The quantity K becomes zero when any one of the quantities
Z,, Ty, Ty becomes zero, it corresponds, therefore, to Routh’s discriminant in the case of the
real quartic. In terms of z,, 2,, %, ¥, Vs ¥ the expressions for H and K are’

H = Az.zy+ Bxyz, + O2,2,,
H? E=z2,3, [H— (1C—n4) (mA—IB)— (mA—1B) (nB—mC)— nB—-m(C) ((—nd)]
where
A=(z,+2,) @2 +2+5)+Wh—%)
B=(ty+m) @z +as+2) + @~y
O= (2, + ;) Qay+a+z)+ W —9,)%
l=2,(y,—¥s)) M= — %), n=2 Y1 —¥y).

It is not evident fram these expressions that z,, z,, and z, are positive when p,, H, and K
are positive;? also H? K is of the eleventh degree in the quantities z,, %, %, ¥ ¥ ¥» and is not
the simplest function of the coefficients which becomes zero when oneof the quantities z,, ,,
@, is zero; consequently it will be worth while to find an alternative set of conditions which
will make ,, 7,, and z, positive.

Let us consider the_expressions

T= (o, +8,) (a; +8y CA +8,) (e +8y) (a5 +85) (a3 +8y) (s +8:) (s +B3) (aa+8y)
= 82,27y [(Zs +25)* + (Y2 — ¥a)?] [(@ +20% + (¥ —¥0)7] [ +20* + (4 — )7,
S=[(e +ﬂ:) (o +8s) + (s +8y) (o4 +8;) + (al +81) (a, +8)1X
[(ay+Bs) (g +By) + (x +8y) (e, +85) + (oq+Bs) (e tByIX
[(og +131) (e +8;) + (s +Bs) (0'-1 +By) + (0'1 +8¢) (o +B1)]
= 42,0, + %% +2,25] [{2: + %+ 1@ —9) } {8+ +i(ys—v0)
+{ay o, Y —y) } {2+ Fiy,— ¥ } {2 +2) Fi(y — v } {2+ 2 iy — ¥ } X
[{ (@ +2,) —ily, —y)} B+ o=t —Y) } H{o ot —¥) ) {mt2, -y —y)} +
{2y +2,— W=y} {2 +H—i@—y)}]
S'=[(cy +8;) (+By) + (s +By) (o8 + (o +8s) (58] X
[(oz+8s) (s +8,) +(ag+8,) (o +8,) +(ay+B;) (ea+B)]1X
[(on+By) (aty+Bs) + (s +B8s) (oq+8a) + (e +8) (oa+8y)]
=4, (2, + ) + (2, +2)* + (Y — Y] [42:1(2 1 25) +{& + 2)* + (U — ¥)*1 X
[day(2, +2) + (@ + %)+ U — )’}
D=2+ 23+ By
It will be noticed that the second and third factors of S are conjugate complex quantities
and so their product is a positive quantity. If is clear then that if p,, S, and T are all pos-
itive, the quantities
T+ 2+ Ty ByZyt T HOT, T2T
are all positive? Now let z,, z,, and z; be regarded as the distances of a point from the sides
of an equilateral triangle. This is legitimate since x,+,+z, is positive. Keeping this
last quantity constant a point can be used to represent any possible set of values of #,, z,, and
¢, whose sum has this constant value.
Now when 2,2, + 7%, + 2,2, 1S positive the representatlve point lies within the circum-
scribing circle of the triangle and When 2,8,7 18 posmve the representa.tlve pomt lies mthm

ey p——— T TTT———

1 8¢e note 1,

1 In the case of the quadratio pymzy-+2s, Hemzimy (542014 (1~ ) =Dipsta—A - Py%1. ' When p; and H ace posftive it Is evident that 142
angd 2,2, are both positive and that consequently 2 and xy are positive.

1 When these quantities are all positive 51 Is also positive.

i mde—— g
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) .
one of the four regions bounded by lines making an acute angle with one another. It is clear
then that when z, +x,+2,, 2,2+ +2,2, and 22,7, are all positive the representative point
must lie within the friangle and z,, z,, #;, be all positive.

" To express § and T in terms of the coefficients we notice that if two of the quantities
o, o, o are interchanged, or if two of the quantities 8, 8,, 8, are interchanged, § is trans-
formed into S*. Hence we are justified in assuming that there is an identity of type

S—8'=kA

A= (az—as) (aa—ax) 0‘1"“2) (ﬁz—ﬁn) (83_131) (ﬁl_éz)

Comparing coefficients we find that k= -~1.
Writing: § in the form

S=(q+@Q+pP —af; — .8, — ;) (q+ @ + PP — au; — B, — ,8,) (@ + @ + PP — 08, — a8, — ,6,)
=(@+@+pP’@+Q +g+Q+pP)PQ+Pq—3¢Q)-TU

where

where

U= (0,8, + a8, -+ 1,8,) (8 +fy +a,8;) (a8, + 8, +x,,)

we assume that
— U+ A =4rR+BePQ+Rpg) + CP*+ Ry") + DPQpg + EPP* + Fp*P@ + Popg)
Determining the unknown coefficients by putting

ey =0, §,=0, . e

@ B2=0, B3=0, -
@ o =ay B;=0,

@) B1=8;,=8

we find that

A=—22z} B=%7 O=-1, D=——;—: E=0, Feo.
Hence finally
8= (q+Q)(q+Q+pP)’+(q+Q+pP)<p’Q+P”q 31@)——rR+ (rP@+ Rpg)
—rP*—Ep® ——Pqu 2A,

A?= (@ — dp*r + 18pgr — 4¢° — 371%) (P2Q*—4P*R+18SPQR —4Q* —27R?)
Writing T in the form _
T=(a" +Poy® +Qoy +R) (o +Poy’+ Qo +B) (o5 + P+ Qo+ R)
we easily find that

T=r"+ R+ PrP¢+ pR*Q+Qrg® + qRQ* — 2Qpr* —2qPR* 4+ 3Rr* + 3R? + R¢*+rQ°* —8Rpgr —3rPQR
+P?pr® + p*PR* + P + p*R*+ PQpgr + pgP@R + P*Qgr + p*¢QR + PQ*pr + p? PR + P*R¢
+pr@Q? —2P?Rpr — 2p°rPR — 3r*PQ — 3R*pq — QRpr — grPR — 2¢*QR — 2Q%qr.

O



